
Main topic:
- Assignment 2: TCP Congestion Control and

Bufferbloat

Breakout rooms:
– The effect of parallel TCP connections on the

congested network?
– The effect of UDP datagram at a very high data-rate?
– Optional: how can lower layer provide better

throughput without modifying TCP?

1

Precept 4

TCP Congestion Window Size
• cwnd - the TCP congestion window size parameter

– maintained by the sender
– determines how much traffic can be outstanding

(sent but not acknowledged) at any time.
• There are many algorithms for cwnd

– Goal: maximizing the connection's throughput while
preventing congestion.

– Tahoe, Reno, New Reno, SACK, CUBIC

2

Congestion detection
• Time-out - lost packets (e.g. buffer overflow at routers)
• 3-ACKs - long delays (e.g. queueing in router buffers)

– less severe since 1 segment is missing but 3 other
segments have been received

3
Source: TCP/IP Protocol Suite 4th

Bandwidth Utilization
• How much time is needed increase cwnd of a

10Gbps from half utilization to full utilization?
– 1500-byte PDU
– 100 ms RTT

• Full utilization cwnd = 10Gbps/1500byte ~=83333
• Half utilization cwnd = 83333/2 = 41666.5

If cwnd is increased by 1 for each RTT
⇒ 41667 RTT is needed to fully utilized the link
⇒ 41667 RTT * 100ms(RTT time) = 69.44minutes

5

Tahoe TCP
• Per RTT (per window):

if(cwnd < ssthresh)
 cwnd *= 2
else

cwnd += 1
• timeout/3rd dup ack:

– Retransmit all unacked.
– ssthresh = cwnd/2
– cwnd = 1

• Packets still getting
through in dup ack – no
need to reset the cwnd!

• Per RTT (per window): :
If(cwnd < ssthresh)
 cwnd *= 2
else

cwnd += 1
• timeout:

Retransmit 1st unacked
ssthresh = cwnd/2
cwnd = 1

• 3rd dup ack:
Retransmit 1st unacked
ssthresh = cwnd/2
cwnd = ssthresh + 3
– Fast Recovery: the pipe is

still almost full – no need
to restart

6

Reno TCP

• Multiple packet losses within a window of data
– Terminates recovery prematurely
– Deflates cwnd to ssthresh
– Detection of second loss relies on another fast

retransmission
• But with much less incoming dup ACKs
• Much less new data packets begin sending out
• Lose self-clocking

7

Problem with Reno

• Idea: use partial ACKs to
stay in fast recovery and fix
more lost segments

• 3rd dup ack:
Retransmit 1st unacked
ssthresh = cwnd/2
cwnd = cwnd/2 + 3

• subsequent dup ack:
cwnd++

• “complete” ack:
cwnd = ssthresh

• “partial” ack:
retransmit
cwnd = ssthresh

8

New Reno TCP
sender receiver

pkt y

pkt x
pkt x+1
pkt x+2

pkt x

ACK<y?

ACK x

• TCP uses cumulative ACKs
– Receiver identifies the last byte of data successfully

received
– Out of order segments are not ACKed
– Receiver sends duplicate ACKs

• TCP forces the TCP sender
– To wait an RTT to find out a segment was lost
– To unnecessarily retransmit data that has been

correctly received
• 🡪 reduced overall throughput

9

Problem with New Reno

• Selective Ack (SACK) + Selective Retransmission Policy
– Receiver informs sender about all segments that are

successfully received
– Sender fast retransmits only the missing data segments

• Can recover more than one packet losses per RTT since
sender now knows which packets are dropped

10

SACK TCP

•

11

CUBIC TCP

wmax: Window size just before the last reduction
β: Multiplicative decrease factor
T: Time elapsed since the last window reduction
C: A Scaling constant
cwnd: The congestion window at the current time

Packet loss
event Cubic starts probing

for more bandwidth
Fast growth

upon reduction

Bufferbloat
• A switching device is configured to use excessively large

buffers to avoid losing packets
🡪 high latency and jitter.

• This can happen even in a typical home network

• Here, the end host in the home network is connected to
the home router.

• The home router is then connected, via cable or DSL, to
a headend router run by the Internet service provider
(ISP).

12

• TCP sender sends until they see lost packet
– but if the buffer is large, the senders is unable to see

the lost packets until this buffer has already filled up
• TCP sender sends at increasingly faster rates until they

see a lost, then the sending rate is already much larger
than the network’s capacity.

• Buffer experiences the increasing delay

13

Bufferbloat

Modem Buffer

ISP

Questions for Thought
• How can parallel TCP connections help congested network?

– Can they hurt the performance instead?

• What happens if one of clients sends UDP datagram at a very high
data-rate?

• How can lower layer provide better throughput without modifying TCP?

BBR: TCP Congestion
Control Protocol introduced
by Google

BBR does not use packet
loss to determine congestion

Estimates bottleneck
bandwidth by measuring
packet delivery rate.

15

Probing for Throughput: TCP BBR

16

Probing for Throughput: TCP BBR

17

Probing for Throughput: TCP BBR

