Precept 4

Main topic:
- Assignment 2: TCP Congestion Control and
Bufferbloat

Breakout rooms:

— The effect of parallel TCP connections on the
congested network?

— The effect of UDP datagram at a very high data-rate?

— Optional: how can lower layer provide better
throughput without modifying TCP?

TCP Congestion Window Size

« cwnd - the TCP congestion window size parameter
— maintained by the sender

— determines how much traffic can be outstanding
(sent but not acknowledged) at any time.

« There are many algorithms for cwnd

— Goal: maximizing the connection's throughput while
preventing congestion.

— Tahoe, Reno, New Reno, SACK, CUBIC

Congestion detection

« Time-out - lost packets (e.g. buffer overflow at routers)
« 3-ACKSs - long delays (e.g. queueing in router buffers)

— less severe since 1 segment is missing but 3 other
segments have been received

-
(=}

SS: Slow Start
Al: Additive Increase

MD: Multiplicative Decrease
Time-out

Threshold = 16

3-ACKs
Threshold = 10

O = = = = NN DN 0
OOO[\J»-h-CDmO[\J»-D-CD¥€

bbb b b b T T T T 1

1
I
1
I
=t
= | g: Al
I [
06 I /
I Al
04 I ' X
02 1 Al

-

| | | | |
1 12 13 14 15 16

1
1 2 3 4 5 6 7 8 9 10 1

Bandwidth Utilization

« How much time is needed increase cwnd of a
10Gbps from half utilization to full utilization”?

— 1500-byte PDU

— 100 ms RTT
 Full utilization cwnd = 10Gbps/1500byte ~=83333
« Half utilization cwnd = 83333/2 = 41666.5

If cwnd is increased by 1 for each RTT
> 41667 RTT is needed to fully utilized the link
> 41667 RTT * 100ms(RTT time) = 69.44minutes

Tahoe TCP

 Per RTT (per window):
if(cwnd < ssthresh)

cwnd *= 2
else
cwnd += 1

 timeout/3"™ dup ack:
— Retransmit all unacked.
— ssthresh = cwnd/2
— cwnd = 1

* Packets still getting

through in dup ack — no
need to reset the cwnd!

14 -
12
10 -

8
6 -
4
2

—e— cwnd
ssthresh

lllllllllllll

Reno TCP

e Per RTT (per window): : 4 —+— Reno ewnd
If(cwnd < ssthresh) o ~° Tahoe cwnd
cwnd *= 2 .
else g
cwnd += 1 & |
e timeout: 4
Retransmit 15t unacked) \/
ssthresh = cwnd/2 0 S ——

cwnd = 1

e 3" dup ack:
Retransmit 15t unacked
ssthresh = cwnd/2
cwnd = ssthresh + 3

— Fast Recovery: the pipe is
still almost full — no need
to restart

Problem with Reno

« Multiple packet losses within a window of data
— Terminates recovery prematurely
— Deflates cwnd to ssthresh

— Detectior] of second loss relies on another fast
retransmission

* But with much less incoming dup ACKs
* Much less new data packets begin sending out
* Lose self-clocking

New Reno TCP

. Idea u? [taartlal ACKs t é)
¥ as recover and fix
ore lost segment

. 3rd dup ack:
Retransmit 1st unacked
ssthresh = cwnd/2
cwnd = cwnd/2 + 3

 subsequent dup ack:
cwnd++

e “complete” ack:
cwnd = ssthresh

e “partial” ack:
retransmit
cwnd = ssthresh

sender

pkt x
pkt x+1
pkt x+2

pkty
pkt x

receiver

Problem with New Reno

e TCP uses cumulative ACKs

— Receiver identifies the last byte of data successfully
received

— Out of order segments are not ACKed
— Receiver sends duplicate ACKs
« TCP forces the TCP sender
— To wait an RTT to find out a segment was lost

— To unnecessarily retransmit data that has been
correctly received

 [] reduced overall throughput

SACKTCP

« Selective Ack (SACK) + Selective Retransmission Policy

— Receiver informs sender about all segments that are
successfully received

— Sender fast retransmits only the missing data segments

TCP without SACK TCP with SACK

Q0
200~299

400-499
ot

CK 00
A ,u—_a

ACK 200, SACK 300-600

=5

.

fast retransmit : fast retransmit
00-299

e Can recovel mure uiain vie packet wsses per RTT since
sender now knows which packets are dropped

10

CUBIC TCP

« Transition from the linear
window growth function to cubic

* Good bandwidth utilization

* W,..: S€Nding rate at which
congestion loss was detected

« Starts at the concave profile and
moves to a convex profile

» Center flat region gives TCP
time to stabilize

e cwnd = C(T —K)3 + Wy 0x
Wmaxﬁ 1/3
where k = (p)

cwnd (pkts)

Wmax: Maximum cwnd size

Steady state behavior

Convex growth

\ Time (s) \
l \ \
Packet loss . .
event Fast growth Cubic starts probing

upon reduction for more bandwidth

w_... Window size just before the last reduction
B: Multiplicative decrease factor

T: Time elapsed since the last window reduction
C: A Scaling constant

cwnd: The congestion window at the current time

11

Bufferbloat

A switching device is configured to use excessively large
buffers to avoid losing packets

1 high latency and |itter.
* This can happen even in a typical home network

Home l‘
— Cable or DSL e @
@ ,
Home Router

Headend Router

 Here, the end host in the home network is connected to
the home router.

* The home router is then connected, via cable or DSL, to
a headend router run by the Internet service provider
(ISP).

Bufferbloat

« TCP sender sends until they see lost packet

— but if the buffer is large, the senders is unable to see
the lost packets until this buffer has already filled up

« TCP sender sends at increasingly faster rates until they
see a lost, then the sending rate is already much larger
than the network’s capacity.

« Buffer experiences the increasing delay
Delay = Data in buf fer/Rsystain

ISP

R > Rsystain=|— = - O

Modem Buffer

Questions for Thought

* How can parallel TCP connections help congested network?
— Can they hurt the performance instead?

« What happens if one of clients sends UDP datagram at a very high
data-rate?

* How can lower layer provide better throughput without modifying TCP?

Probing for Throughput: TCP BBR

BBR: TCP Congestion
Control Protocol introduced
by Google

BBR does not use packet
loss to determine congestion

Estimates bottleneck
bandwidth by measuring
packet delivery rate.

FIGURE 1: DELIVERY RATE AND ROUND-TRIP TIME VS. INFLIGHT

app limited bandwidth limited
/f
\S &
%\.\%ﬁff
A
Q
57
RTprop
(AR R R RN NN NN NN BtlBW LA R N J
S x V
AR
\\Q” optimum loss-based
o operating congestion
\9°~ point control
@ is here operates here

.....

15

Probing for Throughput: TCP BBR

FIGURE 4: FIRST SECOND OF A 10-MBPS, 40-MS BBR FLOW

startup drain probe BW
0 %
: n /
o O
0.00
0 O
cwnd_gain clamps
BBRinflight at 3 BDP L BBR operating
\\ CUBIC switchgs from at full BW with
80 exponential to linear no queue
= 60 inflight grow RTor
10 prop il

16

Probing for Throughput: TCP BBR

FIGURE S: FIRST 8 SECONDS OF 10-MBPS, 40-MS CUBIC AND BBR FLOWS

<«—— packetlossand —»
recovery episodes

bottleneck’s 250 ms
buffer limit

RTT [ms)

wn
oo
=
-
=3
.
L
oo
e
o
st
L
-

time (sec.)

17

